When two eigenvalues in a spectrum intersect, a crossing is said to occur; when they diverge without coinciding, an avoided crossing is said to happen. In spite of their importance as a basic phenomenon ubiquitous in physics - they are found in the spectra of atoms, semiconductors, microwave cavities – (avoided) crossings do not seem to have received a systematic treatment in any introductory text. In the present talk I will suggest a way to fill this gap using a simple mathematical object called the discriminant, which has many nice properties, including the fact that it can always be calculated analytically: it reveals the exact number of (avoided) crossings in the spectrum, points out their locations and the physical mechanisms responsible for their existence, and provides a convenient way to visualize them graphically. All this can be done without actually solving for the spectrum, as will be illustrated using the simple example of a hydrogen atom in a magnetic field.