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Abstract
The polynomial chaos (PC) method has been used in many
engineering applications to replace the traditional Monte
Carlo (MC) approach for uncertainty quantification (UQ) due
to its better convergence properties. Many researchers seek
to further improve the efficiency of PC, especially in higher
dimensional space with more uncertainties. The intrusive PC
Galerkin approach requires the modification of the determin-
istic system, which leads to a stochastic system with a much
bigger size. The non-intrusive collocation approach imposes
the system to be satisfied at a set of collocation points to
form and solve the linear system equations. Compared with
the intrusive approach, the collocation method is easy to im-
plement, however, choosing an optimal set of the collocation
points is still an open problem. In this paper, we first pro-
pose using the low-discrepancy Hammersley/Halton dataset
and Smolyak datasets as the collocation points, then propose
a least-squares (LS) collocation approach to use more collo-
cation points than the required minimum to solve for the sys-
tem coefficients. We prove that the PC coefficients computed
with the collocation LS approach converges to the optimal
coefficients. The numerical tests on a simple 2-dimensional
problem show that PC collocation LS results using the Ham-
mersley/Halton points approach to optimal result.

1. INTRODUCTION
Scientific computing involves computer simulations to im-

itate physical and/or chemical phenomena. The purpose is
not only gain a better understanding of the nature, but also
make predictions with the model. Because of the imperfect
human understanding towards nature, uncertainties need to
be included in the model. In recent years, uncertainty quan-
tification (UQ) research has attracted lots of attention. The
traditional Monte Carlo (MC) [1] sampling technique was
popular due to its conceptual simplicity and ease of imple-
mentation. However, since its convergence is slow (1/

√
n), it

is not an optimal choice for large scale simulations that re-
quire long CPU runtime. The polynomial chaos (PC) method

uses a spectral approximation to represent uncertainties in
the system. The concept originates from Wiener’s homoge-
neous chaos [2], and was further developed by Ghanem and
co-workers [3]. Karniadakis and Xiu [4] generalized and ex-
panded the PC method by including the orthogonal polyno-
mial basis from the Askey-scheme class. This expansion pro-
vides more flexibility for PC to model non-Gaussian uncer-
tainties. So far, PC has been applied successfully in many en-
gineering applications. It works best for a small number of
uncertainties with large degree of uncertainty.
Most of the PC implementations use the Galerkin approach

where the original deterministic system needs to be modified.
For large scale models, the modification work is both compli-
cated and time consuming. The non-intrusive collocation idea
was initially introduced as the Stochastic Response Surface
Method (SRSM) [5] and the Deterministic Equivalent Mod-
elingMethod (DEMM) [6] that impose systems to be satisfied
at a given set of points by treating the system as a blackbox.
Both the collocation PC [7] and the Non-IntrusivePolynomial
Chaos (NIPC) method [8] use the same number of random
collocation points as the number of the PC coefficients. In this
paper, we first explore the low discrepancy dataset as the col-
location points, then propose a collocation least-squares (LS)
approach that uses more collocation points than the number
of the PC coefficients. The paper is organized as follows: the
PC collocation approach and the low-discrepancy datasets are
introduced in section 2. The collocation LS approach is intro-
duced, and theoretical support is provided in section 3. The
numerical test results are presented in Section 4. Conclusions
are drawn in section 5.

2. PC COLLOCATION APPROACH
A general second-order random process X(θ) ∈

L2(Ω,F ,P) can be represented as:

X(θ) =
∞

∑
i=0

ciΦi(ξ(θ)),

where θ is a random event, and Φi(ξ(θ)) are polynomial
functionals defined in terms of the multi-dimensional random



variable ξ(θ) = (ξ1(θ), . . . ,ξn(θ)) with the joint probability
density function w(ξ). The family {Φi} satisfies the orthogo-
nality relations:

〈Φi,Φ j〉 = 0 for i %= j,

where the inner product on the Hilbert space of random func-
tionals is the ensemble average 〈·, ·〉:

〈 f ,g〉 =
Z

f (ξ)g(ξ)w(ξ)dξ.

If the uncertainties in the model are independent random
variables ξ = (ξ1, · · · ,ξn) with a joint probability distribu-
tion w(ξ) = w(1)(ξ1) · · ·w(n)(ξn), then a multi-dimensional
orthogonal basis is constructed from the tensor products of
one-dimensional polynomials {P(k)

m }m≥0 orthogonal with re-
spect to the density w(k) [7]:

Φi(ξ1, · · ·ξn) = P(1)
i1 (ξ1)P

(2)
i2 (ξ2) · · ·P

(n)
in (ξn).

In this case, the evaluation of n-dimensional scalar products
is reduced to n independent one-dimensional scalar products.
In practice, a truncated PC expansion with S terms is used
[3]. Denote the number of random variables by n, and the
maximum degree of the polynomials by p, S is given by (1):

S=
(n+ p)!
(n! p!)

. (1)

With the growth of the polynomial order and the number of
random variables, the total number of terms in the expansion
increases rapidly. Using PC expansion, the original determin-
istic system is replaced by a stochastic system for the PC
coefficients, and the uncertainty information is embedded in
these coefficients.
In order to solve for these coefficients, one can use the

Galerkin approach to project the system on the space spanned
by the orthogonal polynomials. Another approach is to im-
pose the expanded system to be satisfied at a set of points,
hence the collocation approach [9]. The collocation approach
treats the system as a blackbox. The only requirement for the
choices of the collocation points is that the system matrix is
well-conditioned. This requirement leads to the conventional
choice of random collocation points [8, 10]. Although it is
convenient to use the random collocation points, an accu-
rate and consistent solution generated by the randomly cho-
sen collocation points is not guaranteed for each run. More-
over, the alignment or clustering of the data points sometimes
cause the rank deficiency for the system matrix. In this paper,
we consider the low-discrepancy dataset-Hammersley/Halton
dataset.

The low discrepancy sequences [11] have been explored in
the area of the quasi-Monte Carlo integration with large num-
ber of variables. The commonly used datasets include Ham-
mersley points [12], Halton points [13] and Sobol points [14].
The Hammersley and Halton points are closely related, some-
times they are referred to as the Hammersley/Halton points.
Halton dataset has a hierarchical structure and is useful for in-
cremental hierarchical data sampling. Comparisons of these
datasets were made in [15] for numerical integration pur-
poses.
In general, for the same sample size, HSS sample is more

representative of the random distribution than the random
generated samples. In the case of a different distribution, such
as the Gaussian distribution, the points are more clustered to
represent the PDF of the associated random variable. Figure
1 (a) and 1 (b) show the comparison of the random points
and the uniformly distributed Hammersley points. The Ham-
mersley points for Gaussian distribution is shown in Figure 1
(c).

Figure 1. Comparison of random points, uniform Hammer-
sley points and Gaussian Hammersley points.
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Another dataset we are interested is the Smolyak dataset
which is generated from the high order interpolation context
where Lagrange interpolation basis is used [16]: The optimal
choice for 1-dimensional interpolation uses the Chebyshev
points. In higher dimensions, however, the full tensor product
becomes infeasible, since the number of interpolation points
grows exponentially fast with the increase in the number of
dimensions. This is the so-called “curse of dimensionality”.
The Smolyak algorithm [17] is designed to handle the

“curse of dimensionality”. Instead of using a full tensor
product for multi-dimensional interpolation, the algorithm
chooses the representative polynomials from the lower di-
mensions to form the higher-order interpolation polynomial.
There are two implementations of the Smolyak algorithm.

One uses the Chebyshev points in 1-dimension, which gen-
erates the Clenshaw-Curtis formula. The other option uses
Gaussian points (zeros of the orthogonal polynomials with
respect to a weight ρ), which leads to the Gaussian formula.
The optimality of these constructions over the traditional ten-
sor product is discussed in [18].
Using the Smolyak algorithm, a polynomial interpolation

of a d-dimensional function is given by a linear combination
of the tensor product polynomials:



I ( f ) ≡ A(q,d) = ∑
q−d+1≤|i|≤q

(−1)q−|i|1
(
d−1
q− |i|

)

·(U i1 ⊗ · · ·⊗U id),

in which d is the number of dimensions, q is the order of the
algorithm, and q−d is called the level of interpolation.
The nested data set guarantees that the higher degree poly-

nomials reproduce all polynomials of the lower degrees.
Figure 2 illustrates the 2-dimensional Clenshaw-Curtis

sparse grids for level 2 and level 5 constructions.

Figure 2. 2-D Smolyak points.
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The Smolyak sparse grids can be used in both the PC collo-
cation method as the collocation dataset, and in the high-order
interpolation approaches. However, there are disadvantages
of using the Smolyak sparse grids as the collocation points
for PC collocation. First, the number of points is restricted by
the algorithm, as can be seen in Table 1; second, in higher
dimensions, the alignment of the data points causes rank de-
ficient of the system matrix easily. In this case, data points
constructed at a higher level should be used.

Table 1. Number of 2D Smolyak points for different con-
struction levels.

level No. of Smolyak points
1 5
2 13
3 29

3. COLLOCATION LEAST-SQUARES
METHOD

In the PC collocation approach, typically, one requiresQ=
S collocation points in order to solve for S unknowns.Here we
explore the setting whereQ> S, hence the least-squares (LS)
problem. In the following we show that PC LS collocation
solution converges to the theoretical LS solution for a large
number of collocation points.
Consider a function f ∈ L2(Ω). We seek to approximate f

by another function p in a finite dimensional subspace P of
L2(Ω). Let Φ1, . . . ,ΦS be a basis of this subspace. The LS
solution finds p ∈ P to minimize:

min
p∈P

Z

Ω

[
f (ξ)− p(ξ)

]2
w(ξ)dξ=

Z

Ω

(
f (ξ)−

S−1

∑
i=0

aiΦi(ξ)
)2
w(ξ)dξ (2)

Specifically, let p(ξ) =∑S−1i=0 aiΦi(ξ). The optimal LS coef-
ficients can be calculated by taking the derivative of the error
function with respect to the coefficients ai and setting them to
zero (3):

d
dai

= 0 =⇒
S−1

∑
m=0

amΘim = γi,

where Θim = I, γi =
Z

Ω
f (ξ)Φi(ξ)w(ξ)dξ

=⇒ ai =
Z

Ω
f (ξ)Φi(ξ)w(ξ)dξ (3)

For a numerical approach, we approximate the integral in (2)
by MC formula at Q points ξ j ∈Ω ( j = 1, . . . ,Q):

Z

Ω
( f (ξ)− p(ξ))2w(ξ)dξ ≈

1
Q

Q

∑
j=1

[(
f (ξ j)−

S−1

∑
i=0

aiΦi(ξ j)

)2

w(ξ j)
]

(4)

The minimum of (2) is replaced by the minimum of (4). In
order to find the optimal values of ai, we take the derivatives
with respect to ai and set them to zero to obtain:

S−1

∑
m=0

âmΘ̂im = γ̂i, where

Θ̂im =
Q

∑
j=1

Φm(ξ j)Φi(ξ
j)w(ξ j),

γ̂i =
Q

∑
j=1

f (ξ j)Φi(ξ
j)w(ξ j). (5)

Define the collocation matrix:

Ã ji = Φ̃i(ξ j) =Φi(ξ j)
√
w(ξ j) i= 0, . . .S−1, j = 1, . . .Q,

and f̃ (ξ j) = f (ξ j)
√
w(ξ j), we have:

Θ̂im =
(
ÃT Ã

)
im and γ̂i = (ÃT · f̃ )i.

The relation (5) finds the coefficients ai by solving the linear
system:



ÃT Ã · â= ÃT · f̃ .

Numerically, â is obtained by solving the system Ã · â= f̃ . In
LS sense, Ã will be a Q-by-S matrix, with Q> S.
In (5), the left-hand-side involves the MC approximation

for 〈Φm,Φi〉, which contains the approximation error εmi. The
right-hand-side involves the MC approximation for 〈 f ,Φi〉,
which contains the approximation error δi. So the numerical
LS solution âi for:

(Θ+ ε)︸ ︷︷ ︸
Θ̂

· â= (γ+ δ)︸ ︷︷ ︸
γ̂

is bounded by the following (note that Θ = I, the identity
matrix):

||a− â||
||a||

≤ cond(Θ)

[
||ε||
||Θ||

+
||δ||
||γ||

]
= ||ε||+

||δ||
||γ||

.

With the increasing of Q, the MC ensemble numbers, the nu-
merical integration errors ||ε||

||Θ|| and
||δ||
||γ|| → 0, therefore, â→ a.

4. NUMERICAL RESULTS
To illustrate the collocation LS approach, consider a simple

2-dimensional nonlinear function of the random variable ξ1
and ξ2 (6):

f = cos(ξ1+ ξ2)× eξ1ξ2 , ξ1,ξ2 ∈ [0,1]. (6)

For the PC collocation approach: first, the system states x and
y are expanded using order 3 Legendre basis, which results 10
unknown system coefficients. The PC collocation approach
is applied to solve for these unknown coefficients. We tested
Halton datasets that contain 10,20, . . . ,100 points. The hier-
archical Halton dataset has a feature that the smaller number
of the dataset is a subset of the larger number dataset. The
RMSE is shown in Figures 3 (a) and 3 (b) for PC order 3
and 4 respectively. From the graph, we observe that the best
possible number of the collocation points is around 30-40 for
order 3 and 45-55 for order 4. The numerical example shows
that the collocation LS method converges to the true solution
with the increasing of the collocation points. The slight in-
creases of the last three test cases in 3 (b) are caused by the
numerical errors. The figures also show that the RMSE de-
creases with the PC order increase. We find that the optimal
number of collocation points should be about 3-4 times of the
PC modes S.
Lagrange interpolation at the Smolyak points is imple-

mented for the 2-dimensional test function (6). We build

Figure 3. The RMSE decreases with the increase of the
number of collocation points for both PC order 3 and 4.
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level-2 and level-3 interpolation, which requires 13 and 29
Smolyak points, respectively.
The Lagrange interpolation error plots and contour plots

for Smolyak level-3 (29 points) are shown in Figure 4 (a) and
(b), respectively.

Figure 4. Lagrange-Smolyak interpolation level-3 error and
Contour plot.
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The PC order 3 collocation LS approach with different sets
of collocation points are displayed in Figure 5. The optimal
coefficients are computed by analytically taking the deriva-
tive with respect to the coefficients, setting them to zero and
solving for them. Comparing Figure 5 (a), (c) with (e), the
PC collocation LS approach generates similar results for both
Smolyak and Hammersly/Halton collocation datasets. How-
ever, the error contour plot using the Hammersley dataset re-
sembles the optimal coefficients result, as can be seen from 5
(d) and (e).
Detailed information is listed in Table 2. As can be seen

from the table, when we increase the number of colloca-
tion points from 13 to 29 for both Hammersley dataset and
the Smolyak dataset, the RMSE error decreases. The last 2
rows in the table show the high-order Lagrange interpolation
RMSE error. Although the Lagrange interpolation is a min-
imax approach (implemented under the assumption that the
maximum error is minimized), and we can reduce the RMSE
error by building a higher level interpolation, the implemen-



Figure 5. PC order 3 collocation error with different collo-
cation data sets.
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tation is not trivial. The collocation results are better approx-
imation to the optimal result since the collocation approach
minimize the overall error.
Next we assess the robustness of these approaches when

numerical noises are present in function values, which is al-
ways the case for large-scale models. We introduce 2% of
random normal noise for both the Lagrange and PC collcoa-
tion cases. The RMSE and the maximum absolute errors are
displayed in Table 3.
From the error data, we see that the collocation method

with the Smolyak dataset is less sensitive than the Lagrange
interpolation method, and has a smaller error. Another fact
to notice when comparing the collocation and Lagrange in-
terpolation method is that building the high level Lagrange
interpolation with Smolyak algorithm is very tedious, which

Table 2. RMSE and maximum absolute error comparison
for PC collocation method with Hammersley points, Smolyak
points, and optimal interpolation for PC order 3. Lagrange in-
terpolation with Smolyak points results are also listed.

RMSE Max abs. err.
PC-3 - Hamm. 13 pts 1.11×10−1 1.58×10−1
PC-3 - Smo. 13 pts 1.11×10−1 3.27×10−2
PC-3 - optimum 5.69×10−2 6.84×10−2

PC-3 - Hamm. 29 pts 7.11×10−2 8.05×10−2
PC-3 - Smo. 29 pts 8.27×10−2 2.71×10−2

Lag.- Smo.(lv2-13 pts) 9.28×10−1 2.28×10−1
Lag.- Smo.(lv3-29 pts) 8.49×10−2 2.43×10−2

Table 3. With 2 % random normal noise added, RMSE
and maximum absolute error comparison for Lagrange inter-
polation with Smolyak points, PC collocation method with
Smolyak points for PC order 4 expansion.

RMSE Max abs. err.
Lag.- Smo.(lv3-29 pts) 3.38×10−1 1.11×10−1
PC col. (4) -Smo. 29 pts 1.19×10−1 5.25×10−2

also involves the function evaluation. However, for PC col-
location method, the basis can be built beforehand and used
later on. In a case where the function is not smooth, the PC
collocation method has more advantages than the Lagrange
interpolation.

5. CONCLUSIONS
We propose a collocation LS approach with the Hammer-

sley/Halton dataset as collocation points. We show that this
method converges to the optimal LS solution. Numerical tests
show that the high order interpolation using Langrange with
Smolyak points has similar accuracy as the PC approach, but
the collocation LS approach is more flexible, and the colloca-
tion sets are easier to generate. We expect to implement the
collocation LS approach to large scale real model simulation
in the future for UQ purpose.
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