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ABSTRACT
Effective environmental protection policy making depends
on comprehensive and accurate Air Quality Model (AQM)
prediction results. The confidence level associated with the
model prediction, as well as the uncertainty sources that
contribute to the prediction uncertainty are important in-
formation that should not be neglected when interpreting
simulation results. In this work, we explore the capability
of the polynomial chaos (PC) method for uncertainty quan-
tification (UQ) and propose a uncertainty apportionment
(UA) approach that can be easily applied to any forecast
models. The numerical tests on the STEM (Sulfur Trans-
port Eulerian Model) for the northeast region of the United
States provide a categorization for the major uncertainty
sources that contribute to the uncertainty in the ozone con-
centration prediction. This information can be used to guide
the optimal investment decisions as to which input measure-
ment accuracy should be improved to make the maximum
impact on reducing the uncertainty in the prediction result.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications

Keywords
Uncertainty apportionment, Polynomial chaos, Collocation,
STEM.

1. INTRODUCTION
To reduce the air pollution and protect the environment

is one of the most important problems facing modern soci-
ety. An effective environmental protection policy depends
on accurate AQM forecast results and proper interpreta-
tions to the results. Although current AQM has adequately
described the physical and chemical processes in the atmo-
sphere, due to the limitations of human knowledge, uncer-
tainties in parameters, initial and boundary conditions, as-
suming a perfect model is not realistic. Uncertainty quan-
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tification is the process to determine the degree/level of the
doubt about some results. The outcome of the UQ analy-
sis usually include added “error bars” to the original model
forecast results indicating the upper and lower bounds of
the uncertainties. More complete UQ information can be de-
scribed by probability density functions (PDF) of the uncer-
tainties, where the statistical higher moments can be com-
puted, and the integrations over the specific area provide
confidence level information. The UQ results can be used
in both decision making and as a guideline to reduce uncer-
tainties in order to improve accuracy of the model results.

In recent years, researches about UQ techniques become
more and more attractive. Scientists seek effective ways to
represent uncertainties, propagate them through the simula-
tion, and analyze the causes and effects of the uncertainties.
So far, the statistical representation of uncertainties remain
popular, with the traditional Monte Carlo (MC) method [1]
being the easiest to implement. MC generates an ensemble
of random realizations of each uncertain parameter drawn
from a prescribed distribution. The deterministic solvers are
applied to each member to obtain an ensemble of results.
Post-processing the ensemble results produces the probabil-
ity density function (PDF), as well as the statistical mean
and variance. MC is computationally expensive and inef-
ficient due to its slow convergence rate (1/

√
n). However,

with the improvement of the computation power, the MC
result can always be used as a reference solution for other
UQ approaches.

The polynomial chaos (PC) method has gained popular-
ity in recent years as an effective UQ technique. By rep-
resenting uncertainties with spectral approximations, PC is
suitable for large degree of uncertainties for a relative small
number of uncertainties. PC originates from the Wiener [2]
homogeneous chaos that represents stochastic processes us-
ing Gaussian random variables. It was further developed
by Ghanem and co-workers [3] in the finite element con-
text. Karniadakis and Xiu [4] generalized and expanded
the concept by matching the probability distribution of the
random inputs with the PC expansion basis to reach the op-
timal exponential convergence rate. In recent years, PC has
been successfully applied in many numerical models, how-
ever, most of the UQ for AQMs are currently implemented
using the costly MC or improved MC with Latin Hypercube
sampling [5, 6].

In this paper, we explore PC applied to AQMs for UQ
purpose. We use the regional large-scale Sulfur Transport
Eulerian Model (STEM-III) [7] to simulate the atmospheric
chemical transport, advection, diffusion and reactions. Fol-
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lowing environmental expert’s experiences, we model the
main sources of uncertainties in the AQM, namely, the emis-
sions, the boundary conditions, and the deposition veloci-
ties. We investigate the effect of those uncertainties on the
predicted concentrations of the chemical species of interest,
specifically the ozone. We propose a novel approach - un-
certainty apportionment (UA) to attribute the uncertainties
in the predicted ozone concentrations to specific input un-
certainties. The paper is organized as follows: Section 2
presents the PC method and the UA approach. Section 3
shows the numerical test result on the STEM model. Con-
clusions are drawn in section 4.

2. UNCERTAINTY APPORTIONMENT WITH
POLYNOMIAL CHAOS METHOD

Using Wiener’s homogeneous chaos representation [2], a
general second-order random process can be represented as:

X(θ) =
∞X

i=0

ai Φi(ξ(θ)),

in which θ is a random event, Φi(ξ(θ)) are polynomial func-
tionals defined in terms of the multi-dimensional random
variable ξ(θ) = (ξ1(θ), . . . , ξd(θ)) with the joint probability
density function of w(ξ). ai are the corresponding coeffi-
cients. The family {Φi} satisfies the orthogonality relations:

〈Φi,Φj〉 = 0 for i $= j, (1)

where the inner product on the Hilbert space of random
functionals is the ensemble average 〈·, ·〉:

〈f, g〉 =

Z
f(ξ) g(ξ) w(ξ)dξ. (2)

If the uncertainty sources are modeled as independent
random variables ξ = (ξ1, · · · , ξd) with a joint probability
distribution w(ξ) = w(1)(ξ1) · · ·w(d)(ξd) (d is the number
of uncertain parameters), then a multi-dimensional orthog-
onal basis is constructed from the tensor products of one-
dimensional polynomials {P (k)

m }m≥0 orthogonal with respect
to the density w(k) [8]:

Φi(ξ1, · · · ξd) = P (1)
i1

(ξ1)P
(2)
i2

(ξ2) · · ·P (d)
id

(ξd).

In this case, the evaluation of d-dimensional scalar products
is reduced to d independent one-dimensional scalar prod-
ucts. In practice, we consider a truncated PC expansion
with S terms [3]:. With the number of random variables
denoted by d, and the maximum degree of the polynomials
by p, S can be computed by:

S =
(d + p)!
(d ! p !)

. (3)

With the growth of the polynomial order and the number
of the random variables, the total number of terms in the
expansion increases rapidly. This is a major limitation of
the PC method. For a simple ODE deterministic model:

y(t)′ = f(y(t)), t0 ≤ t ≤ T, y(t0) = y0, (4)

with the uncertain states represented by PC expansion:

y(t) =
SX

i=1

ai(t)Φi(ξ), (5)

we generate the stochastic system where the uncertainties
are embedded in the coefficients ai(t):

SX

i=1

(ai(t))′Φi(ξ) = f

 
SX

i=1

ai(t)Φi(ξ)

!
. (6)

Both an intrusive Galerkin and a non-intrusive collocation
approaches can be used to solve for the coefficients [9]. With-
out the requirement to modify the deterministic model, the
non-intrusive collocation approach provides an easier imple-
mentation with similar accurate results compared with the
Galerkin approach.

In general, the PC collocation method includes the follow-
ing steps: (1) Model the sources of uncertainty by random
variables with appropriate PDFs. (2) Build the S orthogonal
polynomials (expansion basis). (3) Generate the PC expan-
sion of the uncertain parameters (or uncertain initial condi-
tions). (4) Select collocation points. (5) Run an ensemble
of the deterministic system simulations with the expansion
obtained from (3) on each collocation point. (6) Recover the
PC coefficients of the results by formulating and solving the
linear equation systems. (7) Extract the mean and the stan-
dard deviation of the final solution, and generate the PDFs.
In this procedure, the majority of the computation time will
be spent on step (5) for repeated deterministic system runs.

After the coefficients are recovered, the system solution
can be represented by a linear combination of stochastic co-
efficients times basis functions. After rearranging the terms
from lower orders to higher orders, the component # of the
state solution is:

y!(t) = a0
!(t)| {z }

0th order term

+ a1
!(t)Φ

1(ξ1) + a2
!(t)Φ

2(ξ2) + . . . + ad
! (t)Φd(ξd)

| {z }
linear order terms

+ H.O.T. 1 ≤ # ≤ n. (7)

In the above representation, the superscripts for the system
coefficients represent the stochastic modes. Φ1(ξ1), . . . ,Φ

d(ξd)
are linear polynomials in variables ξ1, . . . , ξd respectively.
The H.O.T. represents the terms of orders 2 and up, which
include the higher order for ξs and the cross terms.

From the PC representation we can derive the statistics
of the output uncertainty. The mean value is given by the
0th order term in the stochastic representation (7):

〈y!(t)〉 = y!(t) = a0
!(t), 1 ≤ # ≤ n. (8)

The variance is computed as:

s2
!(t) =

D
y!(t) − 〈y!(t)〉, y!(t) − 〈y!(t)〉

E

=
SX

i=1

ai
!(t)a

i
!(t)〈Φi,Φi〉, 1 ≤ # ≤ n. (9)

The standard deviation is thus s!(t). The covariance matrix
of the model state at any time is computed by:
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Rk,!(t) = 〈yk(t), y!(t)〉 =
SX

i=1

ai
k(t)ai

!(t)〈Φi,Φi〉.

With the PC representation of the system states, we can
perform the uncertainty apportionment (UA) by consider-
ing only the first order representations in (7) and attribute
the corresponding uncertainties in the source uncertainty
towards the uncertainty in the model result. The appor-
tionment related researches, such as the Ozone Source Ap-
portionment Technology (OSAT) [10, 11] and the receptor-
oriented source apportionment [12, 13] are performed on the
mean value of the system state, while here, the apportion-
ment is performed on the variance of the state vector. The
proposed UA approach is carried out based on the PC rep-
resentation of the stochastic states (7). In the variance for-
mula (9), we separate the terms corresponding to the linear
terms from the higher order terms:

s2
! =

dX

i=1

(ai
!)

2〈Φi,Φi〉 +
SX

i=d+1

(ai
!)

2〈Φi,Φi〉. (10)

(ai
!)

2〈Φi,Φi〉 in the linear portion is the part of the total
variance s2

! that can be attributed to the i-th source of un-
certainty (modeled by variable ξi). The higher order terms
represent the mixed contribution resulting from the interac-
tion of multiple sources.

Using this feature of the PC representation, we not only
compute the total variance, but also assess the percentage of
the total variance coming from each individual sources. The
numerical test results are described in the following section.

3. NUMERICAL TESTS ON STEM
STEM is a large-scale state-of-the-art regional AQM. It is

used to predict the chemical concentrations at future times
by solving the following material balance equations:

∂ci

∂t
= −u ·∇ci +

1
ρ
∇ · (ρK∇ci) +

1
ρ
fi(ρc) + Ei,

ci(t
0, x) = c0

i (x),

ci(t, x) = cIN
i (t, x) for x ∈ ΓIN ,

knn
∂ci

∂n
= 0 for x ∈ ΓOUT ,

knn
∂ci

∂n
= V dep

i ci − Qi for all 1 ≤ i ≤ n.

The details about the STEM can be found in [7]. We
are especially interested in the forecasted ozone (O3) con-
centration. We would like to quantify the uncertainty in
the predicted ozone concentration and assess the impact to
the forecast uncertainty coming from different uncertainty
sources.

The current STEM model is deterministic, that is, it uses
one emission profile and assumes no errors in the parameters
and inputs, as well as no errors in the representation of phys-
ical processes. However, this is not true in reality. Based
on environmental experts’ experiences [14] about the most
important uncertainty sources for atmospheric model, we
choose seven independent random variables ξ1, . . . , ξ7 (11)
to explicitly model the major uncertainties that are associ-
ated with the model. Although other factors are important,

such as the chemical reaction coefficients, they are not char-
acterized in our test case. Our test case is designed to show
the power of UQ and UA approaches. It is easy to be mod-
ified to reflect other interesting cases. For a complete UQ
analysis, please refer to [14].

ξ1 − NOx ground em. (NO, NO2) (−20% − +20%)

ξ2 − AV OC ground em. (HCHO, ALK, OLE, ARO)

(−50% − +50%)

ξ3 − BV OC ground em.

(ISOPRENE, TERPENE, ETHENE)

(−40% − +40%)

ξ4 − Dep. veloc. for O3 (−50% − +50%) (11)

ξ5 − Dep. veloc. for NO2 (−50% − +50%)

ξ6 − West B.C. for O3 (−5% − +5%)

ξ7 − West B.C. for PAN (−5% − +5%)

To show the capability of modeling non-Gaussian uncer-
tainties with PC, we use the Beta distributed random vari-
ables with parameters a = 1, b = 1, and the Jacobi order 2
polynomials as PC basis. PC collocation approach with the
Hammersley/Halton points are used. As a result, S = 36
deterministic model runs are needed.

The computational region used in this study covers the
northeastern part of the United States, as shown in Figure
1, with a total size of 1500 km×1320 km×20 km. Using the
horizontal resolution of 60 km× 60 km and a variable verti-
cal resolution, a 3-dimensional grid with 25× 22× 21 points
is used. The initial conditions, meteorological field data,
boundary conditions, and emissions are obtained from the
ICARTT (International Consortium for Atmospheric Re-
search on Transport and Transformation) campaign. The
data corresponds to the time window from July 20-22, 2004.
We run a 48-hour forecast starting at 12 noon GMT (8am
EDT) on July 20, 2004. We are interested in the forecasted
ozone concentration as well as the associated uncertainties
at ground level for the following four major cities: 1. Colum-
bus, Ohio; 2. Washington D.C.; 3. Boston, Massachusetts,
and 4. New York City. We compute the total uncertainty
associated with the predicted concentrations and attribute
the total uncertainty to different sources.
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Figure 1: Simulation region and the location of four
major cities where uncertainty in ozone predictions
will be assessed.

Figure 2(a) shows the predicted ozone concentration mean
value after 9 hours, at 5pm (EDT) on July 20, 2004; the
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associated standard deviation is shown in Figure 2(b). Pre-
dicted ozone concentration mean value after 27 hours (at
11am (EDT) on July 21, 2004) and the standard deviations
are shown in Figure 2(c) and Figure 2(d). Predicted mean
ozone concentration after 33 hours (at 5pm (EDT) on July
21, 2004) and the standard deviations are shown in Figure
2(e) and Figure 2(f) respectively. The figures show that ma-
jor cities have large amount of emissions that contribute to
the ozone formation. Comparing Figure 2(b), 2(d) and 2(f),
we see that during the mid of the day, the ozone uncertainty
is spread out, but around evening time, the uncertainties are
more clustered at the major cities, and the uncertainty mag-
nitude are larger.
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(a) Ozone mean at 5pm (b) Ozone std.
(July 20, 2004)
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(c) Ozone mean at 11am (d) Ozone std.
(July 21, 2004)
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(e) Ozone mean at 5pm (f) Ozone std.
(July 21, 2004)

Figure 2: Ozone concentration mean and standard
deviation at 5pm EDT July 20, 11am EDT July 21,
and 5pm EDT July 21, 2004.

We further analyze the total uncertainties with the UA
technique discussed in Section 2. The contribution percent-
age of each source to the total uncertainty is represented
in Table 1 for 5pm, July 20 and 11am, July 21. The “-”
in the table represents contributions that are less than 1%.
From the table, we observe that NOx, AVOC emissions, and
the deposition velocity uncertainties are the major contribu-
tors for the predicted ozone uncertainty. For Columbus and
Washington D.C., the predicted ozone uncertainty is mostly
affected by the uncertainties in the ozone deposition velocity.
While for New York and Boston, NOx and AVOC emissions
contribute significantly. We also observe that AVOC uncer-
tainty contribution increases from around 30% to 60% for
both New York and Boston from 11am to 5pm, indicating a
significant impact of the traffic emission to the air pollution.

The 48-hour ozone concentration time series and UA re-
sults are plotted in Figure 3 for four cities. The upper panels

5pm, July 20
Cities NOx AVOC Dep(O3) WBC(O3) H.O.T
CB - - 96% 1% 3 %
DC 3% 1% 96% - -
NY 25% 68 % 6% - 1%
BT 35% 64% - - 1%

11am, July 21
Cities NOx AVOC Dep(O3) WBC(O3) H.O.T
CB - - 93% 5% 2%
DC 1% 1%- 96% - 1%
NY 22% 31% 47% - -
BT 43% 33% 24% - -

Table 1: Ozone uncertainty apportionment. Per-
centage contributions of different sources for the 4
cities at 5 pm EDT on July 20, 2004 and 11 am EDT
on July 21, 2004 (“-” indicates < 1%).

display the time series with the “error bars” indicating the
uncertainty magnitude. The size of the “error bars” in the
figure is the standard deviation. The prominent two-peak
shape indicates that the ozone concentration is low at night
and high during the day, reaching the maximum concentra-
tion around 5pm in the afternoon. The lower panels of Fig-
ure 3 display the uncertainty apportionment results. Since
there are mainly four sources that contribute to the total
uncertainty, we only plot those sources. Contributions from
other sources are all added up and represented by “Oth-
ers”. Figure 3 provides us the categorization of the input
uncertainties that impact most to the predicted ozone un-
certainty.
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Figure 3: Ozone concentration for 4 cities over 48
hours (upper) and the uncertainty apportionment
for the total variance (lower).

Using PC for UQ provides important insights about the
average ozone concentration levels. Using the forecasted
ozone concentrations in Boston from 11am to 11pm (first
peak in the upper panel of Figure 3(d)), we perform an
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interpolation and compute an 8-hour average ozone concen-
tration for the time window from 12 noon to 8pm. The PDF
plot in Figure 4 shows the uncertainty information associ-
ated with this average concentration. The shaded area in the
figure indicates the probability of the 8-hour average ozone
concentration in Boston exceeding 75 ppbv. The probability
of 8-hour average ozone concentration exceeding 70 ppbv is
about 88%, exceeding 75 ppbv is about 68%, exceeding 80
ppbv is about 43%, and exceeding 85 ppbv is about 22%.
This visual uncertainty illustration provides a very effective
way to communicate uncertainties in the model results to
the policy makers, and allow them to make informed deci-
sions.

Furthermore, the UA results provide insights about the
impact of different input uncertainties on the model result.
This information is essential to guide efforts to reduce the
measurement errors. For example, Figure 3 shows that
both Columbus and Washington DC. ozone uncertainties
are dominated by ozone deposition velocity uncertainty. In-
vesting more to increase the AVOC and NOX measurement
accuracy for these two cities might not have a significant
impact on reducing the predicted ozone uncertainty.
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0.01

0.02

0.03

0.04

0.05

0.06
Boston

Concentration [ ppbv ]

P
D

F

Figure 4: Boston average ozone PDF from 12pm-
8pm EDT on July 20, 2004.

4. CONCLUSIONS
We propose a uncertainty apportionment approach based

on the polynomial chaos expansion of the system uncer-
tainty. The numerical tests with the STEM model show the
ability of the UA technique to further analyze the impact of
the input uncertainties towards the total uncertainty in the
forecast states. Using PC method, we not only obtain “con-
fidence level” information for the predicted chemical concen-
tration in the air (even for non-Gaussian uncertainties), but
also have knowledge about the most important uncertainty
sources. We expect that the UA technique provides new in-
sights for making policy decisions regarding environmental
protection, because qualified policy decision based on mod-
els can be made only when one knows the level of confidence
to be attributed to the model results.
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